Linear Lagrange equations generalizing rotation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1974 J. Phys. A: Math. Nucl. Gen. 71514
(http://iopscience.iop.org/0301-0015/7/13/005)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.87
The article was downloaded on 02/06/2010 at 04:52

Please note that terms and conditions apply.

Linear Lagrange equations generalizing rotation

E Engels
Seminarıe Analytische Mechanıca, Rijksuniversiteit Gent, B-9000 Gent, Belgium

Recerved 2 January 1974, in final form 7 February 1974

Abstract

An N-dimensional linear Lagrange equation is given which generalizes some classical problems. Particular interest is paid to the equation generalizing a rotation. The general solution is obtained with the use of a matrix exponential method. When applied to the three-dimensional motion of a heavy particle near the surface of the earth, the results are in agreement with known results found by other methods.

1. Introduction

Consider a linear equation of motion in N dimensions:

$$
\begin{equation*}
\ddot{\boldsymbol{q}}+\mathbf{A}(t) \cdot \dot{\boldsymbol{q}}+\mathbf{B}(t) \cdot \boldsymbol{q}=\boldsymbol{F}(t), \tag{1}
\end{equation*}
$$

where \mathbf{A} and \mathbf{B} are two $N \times N$ matrices. On account of the Helmholtz conditions (Helmholtz 1887) the necessary and sufficient conditions for (1) to be a Lagrange equation, are

$$
\begin{align*}
& \mathbf{B}=\frac{1}{2} \dot{\mathbf{A}}+\mathbf{S}, \tag{2a}\\
& \mathbf{S}=\mathbf{S}^{\mathrm{T}}, \tag{2b}\\
& \mathbf{A}=-\mathbf{A}^{\mathrm{T}}, \tag{2c}
\end{align*}
$$

S being an arbitrary symmetric $N \times N$ matrix. The lagrangian of the system is

$$
\begin{equation*}
L=\frac{1}{2} \dot{\boldsymbol{q}}^{2}+\frac{1}{2} \dot{\boldsymbol{q}} . \text { A. } \boldsymbol{q}-\frac{1}{2} \boldsymbol{q} . \mathbf{S} . \boldsymbol{q}+\boldsymbol{F} . \boldsymbol{q} . \tag{3}
\end{equation*}
$$

If $\mathbf{S} \equiv 0$ and $\boldsymbol{F} \equiv 0$, equation (1) under conditions (2) is the generalization of the equation of motion for a charged particle in a uniform time-dependent magnetic field, as was recently discussed in a paper by Engels and Sarlet (1973).

If $\mathbf{S} \equiv \frac{1}{4} \mathbf{A}^{2}$, equation (1) is, as will be discussed in $\S 3$ of this paper, the generalization of the equation of motion for a particle in a rotating frame. $\boldsymbol{F}(t)$ stands for the generalized force per unit mass and the rotation is represented by the skew-symmetric matrix $\boldsymbol{\Omega}=\frac{1}{2} \mathbf{A}$. The equation of motion is then

$$
\begin{equation*}
\ddot{q}+2 \boldsymbol{\Omega} \cdot \dot{q}+\dot{\Omega} \cdot q+\mathbf{\Omega}^{2} \cdot q=F \tag{4}
\end{equation*}
$$

This equation can be reduced to a canonical form (no term with first derivative) with the help of a linear transformation

$$
\begin{equation*}
\boldsymbol{q}=\mathbf{G} \cdot \boldsymbol{u} \tag{5}
\end{equation*}
$$

where \mathbf{G} is any particular solution of the matrix differential equation

$$
\begin{equation*}
\dot{\mathbf{G}}+\boldsymbol{\Omega} . \mathbf{G}=0 . \tag{6}
\end{equation*}
$$

Such a particular solution is given by

$$
\begin{equation*}
\mathbf{G}=\exp \left(-\int_{0}^{t} \boldsymbol{\Omega} \mathrm{~d} t\right)=\sum_{j=0}^{\infty} \frac{\left(-\int_{0}^{t} \boldsymbol{\Omega} \mathrm{~d} t\right)^{j}}{j!} \tag{7}
\end{equation*}
$$

under the condition that $\boldsymbol{\Omega}$ commutes with its integral, which is certainly the case when the rotation is unidirectional $\left(\boldsymbol{\Omega}(t)=\omega(t) \boldsymbol{\Omega}_{0}\right)$ or constant. The canonical equation is

$$
\begin{equation*}
\ddot{\boldsymbol{u}}=\exp \left(\int_{0}^{t} \boldsymbol{\Omega} \mathrm{~d} t\right) \cdot \boldsymbol{F} \tag{8}
\end{equation*}
$$

which can immediately be solved; substitution of \boldsymbol{u} in (5) yields the general solution of (4):

$$
\begin{equation*}
\boldsymbol{q}=\exp \left(-\int_{0}^{t} \boldsymbol{\Omega} \mathrm{~d} t\right) \cdot \int_{0}^{t} \mathrm{~d} t \int_{0}^{t} \exp \left(\int_{0}^{t} \boldsymbol{\Omega} \mathrm{~d} t\right) \cdot \boldsymbol{F} \mathrm{d} t+\exp \left(-\int_{0}^{t} \boldsymbol{\Omega} \mathrm{~d} t\right) \cdot(\boldsymbol{a} t+\boldsymbol{b}) \tag{9}
\end{equation*}
$$

where \boldsymbol{a} and \boldsymbol{b} are two integration constants.
Taking from now on $\boldsymbol{\Omega}$ and \boldsymbol{F} constant, one has

$$
\begin{equation*}
\boldsymbol{q}=\exp (-\boldsymbol{\Omega} t) \cdot \int_{0}^{t} \mathrm{~d} t \int_{0}^{t} \exp (\boldsymbol{\Omega} t) \mathrm{d} t \cdot \boldsymbol{F}+\exp (-\boldsymbol{\Omega} t) \cdot(\boldsymbol{a} t+\boldsymbol{b}) \tag{10}
\end{equation*}
$$

This solution, however, remains purely formal, as long as the matrix exponentials must be written out as infinite series according to the definition (7). Therefore we look for a closed expression for (10).

2. General solution in closed form

The matrix exponential $\exp (\boldsymbol{\Omega} t)$ is defined as an infinite power series in $\boldsymbol{\Omega}$. This will also be the form taken by the matrix factors $\exp (-\boldsymbol{\Omega} t)$ and $\exp (-\boldsymbol{\Omega} t) \cdot \int_{0}^{t} \mathrm{~d} t \int_{0}^{t} \exp (\boldsymbol{\Omega} t) \mathrm{d} t$ occurring in (10) and, more generally, by any matrix operator $f(\boldsymbol{\Omega})$ of $\exp (\Omega t)$, which in addition to products, also may contain time derivations and time integrations. Since $\boldsymbol{\Omega}$ satisfies its minimal polynomial, which we suppose to be of degree $n(n \leqslant N)$, it is possible to express the powers of $\boldsymbol{\Omega}$, starting from the nth power, as a linear combination of smaller powers of $\boldsymbol{\Omega}$. This leads us to write

$$
\begin{equation*}
\mathbf{f}(\boldsymbol{\Omega})=\lambda_{0} \mathbf{I}+\lambda_{1} \boldsymbol{\Omega}+\ldots+\lambda_{n-1} \boldsymbol{\Omega}^{n-1} \tag{11}
\end{equation*}
$$

where the n coefficients $\lambda_{0}, \lambda_{1}, \ldots, \lambda_{n-1}$ must be determined as functions of time.
As it is always possible to diagonalize $\boldsymbol{\Omega}$, use can be made of the Lagrange-Sylvester interpolation formula (Gantmacher 1959)

$$
\begin{equation*}
\mathbf{f}(\boldsymbol{\Omega})=\sum_{r=1}^{n} f\left(\alpha_{r}\right)\left(\sum_{\substack{1 \\ s \neq r}}^{n}\left(\boldsymbol{\Omega}-\alpha_{s} \mathbf{l}\right)\right)\left(\sum_{\substack{1 \\ s \neq r}}^{n}\left(\alpha_{r}-\alpha_{s}\right)\right)^{-1} \tag{12}
\end{equation*}
$$

where α_{r} are the n different eigenvalues of $\boldsymbol{\Omega}$. Now, since $\boldsymbol{\Omega}$ is a skew-symmetric matrix, its eigenvalues are purely imaginary and complex conjugate in pairs or zero; if n is odd, at least one eigenvalue is zero. Putting $m=\frac{1}{2} n$ if n is even, and $m=\frac{1}{2}(n-1)$ if n is odd, the different eigenvalues of $\boldsymbol{\Omega}$ will be denoted by $\mathrm{i} \omega_{1}, \ldots, \mathrm{i} \omega_{m},-\mathrm{i} \omega_{1}, \ldots,-\mathrm{i} \omega_{m}, 0$, writing the zero only if n is odd.

The coefficients λ_{j} must be determined by identification of (11) and (12). For a simple calculation from the minimal polynomial, we replace in (11) and (12) $\boldsymbol{\Omega}$ by a variable z (and I by 1), and write

$$
\begin{align*}
f(z)=\lambda_{0}+ & \lambda_{1} z+\ldots+\lambda_{n-1} z^{n-1} \\
= & \sum_{j=1}^{m} \frac{f\left(\mathrm{i} \omega_{j}\right) k(z)}{\left(z-\mathrm{i} \omega_{j}\right) k^{\prime}\left(\mathrm{i} \omega_{j}\right)}+\sum_{j=1}^{m} \frac{f\left(-\mathrm{i} \omega_{j}\right) k(z)}{\left(z+\mathrm{i} \omega_{j}\right) k^{\prime}\left(-\mathrm{i} \omega_{j}\right)}+\frac{f(0) k(z)}{z k^{\prime}(0)} \delta_{n, 2 m+1} \tag{13}\\
= & \sum_{j=1}^{m} \frac{f\left(\mathrm{i} \omega_{j}\right)+(-1)^{n+1} f\left(-\mathrm{i} \omega_{j}\right)}{k^{\prime}\left(\mathrm{i} \omega_{j}\right)}\left(\frac{z k(z)}{z^{2}+\omega_{j}^{2}}\right) \\
& +\sum_{j=1}^{m} \frac{\mathrm{i} \omega_{j}\left[f\left(\mathrm{i} \omega_{j}\right)+(-1)^{n} f\left(-\mathrm{i} \omega_{j}\right)\right]}{k^{\prime}\left(\mathrm{i} \omega_{j}\right)}\left(\frac{k(z)}{z^{2}+\omega_{j}^{2}}\right)+\frac{f(0)}{k^{\prime}(0)}\left(\frac{k(z)}{z}\right) \delta_{n, 2 m+1} .
\end{align*}
$$

$k(z)$ is nothing else but the minimal polynomial of $\boldsymbol{\Omega}$:
$k(z) \equiv z^{n}-S_{1} z^{n-1}+\ldots+(-1)^{n} S_{n}= \begin{cases}\prod_{j=1}^{m}\left(z^{2}+\omega_{j}^{2}\right) & \text { for } n \text { even } \\ z \prod_{j=1}^{m}\left(z^{2}+\omega_{j}^{2}\right) & \text { for } n \text { odd },\end{cases}$
where S_{p} are elementary symmetrical functions of the ω_{j}. If all the eigenvalues of $\boldsymbol{\Omega}$ are distinct, the minimal polynomial equals the characteristic polynomial and then S_{p} is the sum of the principal minors of order p of the determinant of $\boldsymbol{\Omega}$. Obviously $S_{p}=0$ if p is odd. Noting that

$$
\begin{equation*}
\lambda_{q}=\frac{1}{q!}\left(\frac{\mathrm{d}^{q} f(z)}{\mathrm{d} z^{q}}\right)_{z=0}, \quad(q=0,1, \ldots, n-1) \tag{15}
\end{equation*}
$$

the coefficients λ_{q} can be found by straightforward calculation from (13), and substitution in (11) leads to the desired finite power series. If $\boldsymbol{f}(\boldsymbol{\Omega})$ is supposed to be a real operator, the result is
for $n=2 m$:

$$
\begin{equation*}
\mathbf{f}(\boldsymbol{\Omega})=\sum_{j=1}^{m} \mathbf{A}_{j} \cdot\left(\operatorname{Re} f\left(i \omega_{j}\right) \mathbf{I}+\operatorname{Im} f\left(i \omega_{j}\right) \frac{\boldsymbol{\Omega}}{\omega_{j}}\right), \tag{16a}
\end{equation*}
$$

for $n=2 m+1$:

$$
\begin{equation*}
\mathbf{f}(\boldsymbol{\Omega})=f(0) \mathbf{I}+\sum_{j=1}^{m} \mathbf{A}_{j} \cdot\left(\operatorname{lm} f\left(\mathrm{i} \omega_{j}\right) \frac{\boldsymbol{\Omega}}{\omega_{j}}+\left(f(0)-\operatorname{Re} f\left(\mathrm{i} \omega_{j}\right)\right) \frac{\boldsymbol{\Omega}^{2}}{\omega_{j}^{2}}\right) \tag{16b}
\end{equation*}
$$

where in both expressions

$$
\begin{equation*}
\mathbf{A}_{j}=\sum_{l=0}^{m-1} \frac{(-1)^{l} k_{2 l}\left(\mathrm{i} \omega_{j}\right)}{\omega_{j}^{2} \Pi_{p=1, p \neq j}^{m}\left(\omega_{p}^{2}-\omega_{j}^{2}\right)} \frac{\boldsymbol{\Omega}^{2 l}}{\omega_{j}^{2 l}} . \tag{17}
\end{equation*}
$$

By $k_{21}(z)$ is denoted the polynomial obtained by omitting all the terms containing z raised to a power greater than $2 l$ in $k(z)\left(n\right.$ even) or $k(z) / z(n$ odd $)$, and $k_{2 l}\left(i \omega_{j}\right)$ in (17) is equal to $\Sigma_{r=0}^{i}(-1)^{r} S_{2(m-r)} \omega_{j}^{2 r}$.

In particular the closed form of the matrix exponential is found to be
for $n=2 m$:

$$
\begin{equation*}
\exp (\boldsymbol{\Omega} t)=\sum_{j=1}^{m} \mathbf{A}_{j} \cdot\left(\cos \omega_{j} t \mathbf{l}+\frac{\sin \omega_{j} t}{\omega_{j}} \boldsymbol{\Omega}\right), \tag{18a}
\end{equation*}
$$

for $n=2 m+1$:

$$
\begin{equation*}
\exp (\boldsymbol{\Omega} t)=1+\sum_{j=1}^{m} \mathbf{A}_{j} \cdot\left(\frac{\sin \omega_{j} t}{\omega_{j}} \boldsymbol{\Omega}+\frac{1-\cos \omega_{j} t}{\omega_{j}^{2}} \boldsymbol{\Omega}^{2}\right) \tag{18b}
\end{equation*}
$$

This last equation is a generalization of a formula deduced by Chang and Audeh (1970) in the case of three dimensions, using direct recursion relations for $\boldsymbol{\Omega}$.

After substitution of t by $-t$ in (18) we get the inverse matrices
for $n=2 m$:

$$
\begin{equation*}
\exp (-\boldsymbol{\Omega} t)=\sum_{j=1}^{m} \mathbf{A}_{j} \cdot\left(\cos \omega_{j} t \mathbf{l}-\frac{\sin \omega_{j} t}{\omega_{j}} \boldsymbol{\Omega}\right) \tag{19a}
\end{equation*}
$$

for $n=2 m+1$:

$$
\begin{equation*}
\exp (-\boldsymbol{\Omega} t)=\mathbf{I}+\sum_{j=1}^{m} \mathbf{A}_{j} \cdot\left(-\frac{\sin \omega_{j} t}{\omega_{j}} \boldsymbol{\Omega}+\frac{1-\cos \omega_{j} t}{\omega_{j}^{2}} \boldsymbol{\Omega}^{2}\right) \tag{19b}
\end{equation*}
$$

In the same way the matrix $\mathbf{P}=\exp (-\boldsymbol{\Omega} t) \cdot \int_{0}^{t} \mathrm{~d} t \int_{0}^{t} \exp (\boldsymbol{\Omega} t) \mathrm{d} t$ occurring in (10) can be written as a finite power series in $\boldsymbol{\Omega}$. Putting in (16)

$$
\begin{gather*}
f\left(\mathrm{i} \omega_{j}\right)=\exp \left(-\omega_{j} t\right) \int_{0}^{t} \mathrm{~d} t \int_{0}^{t} \exp \left(\mathrm{i} \omega_{j} t\right) \mathrm{d} t=\frac{1-\exp \left(-\mathrm{i} \omega_{j} t\right)-\mathrm{i} \omega_{j} t \exp \left(-\mathrm{i} \omega_{j} t\right)}{\left(\mathrm{i} \omega_{j}\right)^{2}} \tag{20a}\\
f(0)=\frac{1}{2} t^{2} \tag{20b}
\end{gather*}
$$

there results
for $n=2 m$:
$\mathbf{P}=\sum_{j=1}^{m} \frac{\mathbf{A}_{j}}{\omega_{j}^{2}} \cdot\left(\left[\omega_{j} t \sin \omega_{j} t-\left(1-\cos \omega_{j} t\right)\right] 1+\left(\omega_{j} t \cos \omega_{j} t-\sin \omega_{j} t\right) \frac{\boldsymbol{\Omega}}{\omega_{j}}\right)$,
for $n=2 m+1$:

$$
\begin{equation*}
\mathbf{P}=\frac{t^{2}}{2} \mathbf{I}+\sum_{j=1}^{m} \frac{\mathbf{A}_{j}}{\omega_{j}^{2}} \cdot\left(\left[\omega_{j} t \cos \omega_{j} t-\sin \omega_{j} t\right] \frac{\boldsymbol{\Omega}}{\omega_{j}}+\left(\frac{1}{2} \omega_{j}^{2} t^{2}+1-\cos \omega_{j} t-\omega_{j} t \sin \omega_{j} t\right) \frac{\mathbf{\Omega}^{2}}{\omega_{j}^{2}}\right), \tag{21b}
\end{equation*}
$$

with \mathbf{A}_{j} given again by (17).

Substitution of (19) and (21) into (10) yields the general solution for \boldsymbol{q} in a closed form. Leaving the initial conditions very general: when $t=0: \boldsymbol{q}(0)=\boldsymbol{q}_{0}$ and $\dot{\boldsymbol{q}}_{0}=\boldsymbol{v}_{0}$, we find for $n=2 m$:

$$
\begin{align*}
& \boldsymbol{q}=\sum_{j=1}^{m} \frac{\mathbf{A}_{j}}{\omega_{j}^{2}} \cdot\left(\left[\omega_{j} t \sin \omega_{j} t-\left(1-\cos \omega_{j} t\right)\right] \boldsymbol{F}+\left(\omega_{j} t \cos \omega_{j} t-\sin \omega_{j} t\right) \frac{\boldsymbol{\Omega} \cdot \boldsymbol{F}}{\omega_{j}}\right) \\
&+\sum_{j=1}^{m} \mathbf{A}_{j} \cdot\left(\left(\omega_{j} t \sin \omega_{j} t+\cos \omega_{j} t\right) \boldsymbol{q}_{0}+\left(\omega_{j} t \cos \omega_{j} t-\sin \omega_{j} t\right) \frac{\boldsymbol{\Omega} \cdot \boldsymbol{q}_{0}}{\omega_{j}}\right) \\
&+\sum_{j=1}^{m} \mathbf{A}_{j} \cdot\left(t \cos \omega_{j} t \boldsymbol{v}_{0}-t \sin \omega_{j} t \frac{\boldsymbol{\Omega} \cdot \boldsymbol{v}_{0}}{\omega_{j}}\right) \tag{22a}
\end{align*}
$$

for $n=2 m+1$:

$$
\begin{align*}
\boldsymbol{q}=\frac{t^{2}}{2} \boldsymbol{F}+\sum_{j=1}^{m} & \frac{t^{2}}{2} \mathbf{A}_{j} \cdot \frac{\boldsymbol{\Omega}^{2} \cdot \boldsymbol{F}}{\omega_{j}^{2}}+\boldsymbol{q}_{0}+t \boldsymbol{v}_{0} \\
& +\sum_{j=1}^{m} \frac{\mathbf{A}_{j}}{\omega_{j}^{2}} \cdot\left(\left(\omega_{j} t \cos \omega_{j} t-\sin \omega_{j} t\right) \frac{\boldsymbol{\Omega} \cdot \boldsymbol{F}}{\omega_{j}}+\left(1-\cos \omega_{j} t-\omega_{j} t \sin \omega_{j} t\right) \frac{\boldsymbol{\Omega}^{2} \cdot \boldsymbol{F}}{\omega_{j}^{2}}\right) \\
& +\sum_{j=1}^{m} \mathbf{A}_{j} \cdot\left(\left(\omega_{j} t \cos \omega_{j} t-\sin \omega_{j} t\right) \frac{\boldsymbol{\Omega} \cdot \boldsymbol{q}_{0}}{\omega_{j}}\right. \\
& \left.+\left(1-\cos \omega_{j} t-\omega_{j} t \sin \omega_{j} t\right) \frac{\boldsymbol{\Omega}^{2} \cdot \boldsymbol{q}_{0}}{\omega_{j}^{2}}\right) \\
& +\sum_{j=1}^{m} \mathbf{A}_{j} \cdot\left(-t \sin \omega_{j} t \frac{\boldsymbol{\Omega} \cdot \boldsymbol{v}_{0}}{\omega_{j}}+t\left(1-\cos \omega_{j} t\right) \frac{\boldsymbol{\Omega}^{2} \cdot \boldsymbol{v}_{0}}{\omega_{j}^{2}}\right) \tag{22b}
\end{align*}
$$

3. Application to particle motion in a rotating frame

The equation of motion describing particle motion in a three-dimensional space with respect to a rotating coordinate system having the same origin as the fixed frame, is known to be (Goldstein 1950)

$$
\begin{equation*}
m \ddot{r}=F_{\mathrm{a}}+\boldsymbol{F}_{\mathrm{t}}+\boldsymbol{F}_{\mathrm{c}}, \tag{23}
\end{equation*}
$$

with $\boldsymbol{F}_{\mathrm{a}}$: the absolute force; $\boldsymbol{F}_{\mathrm{t}}=-m[\dot{\boldsymbol{\omega}} \times \boldsymbol{r}+\boldsymbol{\omega} \times(\boldsymbol{\omega} \times \boldsymbol{r})]$: the force of transport $\boldsymbol{F}_{\mathrm{c}}=-2 m(\boldsymbol{\omega} \times \dot{\boldsymbol{r}})$: the Coriolis force. To expose the announced connection with (4), equation (23) is written as

$$
\begin{equation*}
\ddot{r}+2 \boldsymbol{\omega} \times \dot{r}+\dot{\omega} \times r+\omega \times(\omega \times r)=\frac{F_{\mathrm{a}}}{m} . \tag{24}
\end{equation*}
$$

If a skew-symmetric matrix $\boldsymbol{\Omega}$ is associated with $\boldsymbol{\omega}\left(\omega_{x}, \omega_{y}, \omega_{z}\right)$ according to

$$
\boldsymbol{\Omega}=\left(\begin{array}{ccc}
0 & -\omega_{z} & \omega_{y} \\
\omega_{z} & 0 & -\omega_{x} \\
-\omega_{y} & \omega_{x} & 0
\end{array}\right)
$$

each cross product $\boldsymbol{\omega} \times \boldsymbol{x}$ can be replaced by an inner product $\boldsymbol{\Omega} . \boldsymbol{x}$. In this way (24) is reduced to (4).

The equation is of particular interest for describing the motion of a heavy particle near the surface of the earth; then $\boldsymbol{\Omega}$ and $\boldsymbol{F}_{\mathrm{a}} / m=\boldsymbol{g}$ may be treated as constant and (24) becomes:

$$
\begin{equation*}
\ddot{r}+2 \boldsymbol{\Omega} \cdot \dot{r}+\Omega^{2} \cdot r=g . \tag{25}
\end{equation*}
$$

The exact solution of this equation has been obtained by von Eberhard (1930) and Leroy (1971) after projection on the axes of a well chosen coordinate system. A frame-independent vector solution has been obtained by Verheest and Leroy (1973) using a representation in circularly polarized coordinates.

The method of the matrix exponential, discussed in this paper, enables us to write down this solution immediately. The eigenvalues of $\boldsymbol{\Omega}$ are 0 and $\pm i \omega$, with $\omega^{2}=\omega_{x}^{2}+\omega_{y}^{2}+\omega_{z}^{2}$; as $\mathbf{A}=\mathbf{I}$ for $N=n=3$, we find for the matrix exponential from (18b)

$$
\exp (\boldsymbol{\Omega} t)=\mathbf{I}+\frac{\sin \omega t}{\omega} \boldsymbol{\Omega}+\frac{1-\cos \omega t}{\omega^{2}} \boldsymbol{\Omega}^{2}
$$

and for the general solution from (22b)

$$
\begin{align*}
& \boldsymbol{r}=\frac{t^{2}}{2} \boldsymbol{g}+\frac{t^{2} \mathbf{\Omega}^{2} \cdot \boldsymbol{g}}{2 \omega^{2}}+\boldsymbol{r}_{0}+t \boldsymbol{v}_{0} \\
&+(\omega t \cos \omega t-\sin \omega t) \frac{\boldsymbol{\Omega} \cdot \boldsymbol{g}}{\omega^{3}}+(1-\cos \omega t-\omega t \sin \omega t) \frac{\mathbf{\Omega}^{2} \cdot \boldsymbol{g}}{\omega^{4}} \\
&+(\omega t \cos \omega t-\sin \omega t) \frac{\boldsymbol{\Omega} \cdot \boldsymbol{r}_{0}}{\omega}+(1-\cos \omega t-\omega t \sin \omega t) \frac{\mathbf{\Omega}^{2} \cdot \boldsymbol{r}_{0}}{\omega^{2}} \\
&-t \sin \omega t \frac{\boldsymbol{\Omega} \cdot \boldsymbol{v}_{0}}{\omega}+t(1-\cos \omega t) \frac{\mathbf{\Omega}^{2} \cdot \boldsymbol{v}_{0}}{\omega^{2}} \tag{26}
\end{align*}
$$

which after we return to a notation with cross products and choose the initial condition $\boldsymbol{r}_{0}=0$, leads us to the solution found by Verheest and Leroy (1973).

Acknowledgments

The author would like to thank Professor Dr R Mertens and Dr F Verheest for their continuous interest in his work. He also is indebted to Dr A Vanderbauwhede for helpful suggestions.

References

