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Abstract. An N-dimensional linear Lagrange equation is given which generalizes some 
classical problems. Particular interest is paid to the equation generalizing a rotation. The 
general solution is obtained with the use of a matrix exponential method. When applied 
to the three-dimensional motion of a heavy particle near the surface of the earth, the results 
are in agreement with known results found by other methods. 

1. Introduction 

Consider a linear equation of motion in N dimensions : 

4 + A(t) . 4 + B(t). q = F(t),  (1) 
where A and B are two N x N matrices. On account of the Helmholtz conditions 
(Helmholtz 1887) the necessary and sufficient conditions for (1) to be a Lagrange 
equation, are 

B = )A+S, ( 2 4  

s = ST, (26) 

A = -AT, (2c) 

L = + q 2 + i 4 .  A .q- )q .  S .  q + F .  9. 

S being an arbitrary symmetric N x N matrix. The lagrangian of the system is 

(3 1 
If S = 0 and F 0, equation (1) under conditions ( 2 )  is the generalization of the equation 
of motion for a charged particle in a uniform time-dependent magnetic field, as was 
recently discussed in a paper by Engels and Sarlet (1973). 

If S = ;A2, equation (1) is, as will be discussed in 6 3 of this paper, the generalization 
of the equation of motion for a particle in a rotating frame. F(t)  stands for the generalized 
force per unit mass and the rotation is represented by the skew-symmetric matrix 
C? = )A. The equation of motion is then 

9+2C?.4+h.q+S'l2. 9 = F. (4) 
This equation can be reduced to a canonical form (no term with first derivative) with the 
help of a linear transformation 

q = G . u ,  ( 5 )  

G + O . G  = O .  (6) 

where G is any particular solution of the matrix differential equation 

1514 
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Such a particular solution is given by 

G = expi - 1: R d t )  = cc ( - JbRdty  
j = o  j !  

1 (7) 

under the condition that R commutes with its integral, which is certainly the case when 
the rotation is unidirectional (R(t) = o(t)R,) or constant. The canonical equation is 

U = exp( J: R dt) . F, 

which can immediately be solved ; substitution of uin (5) yields the general solution of (4) : 

q = e x p (  -1 ;Rd t )  ./:dtJb(exp(/:Rdt) .Fdt+exp(  - J:Rdt).(at+b), (9) 

where a and b are two integration constants. 
Taking from now on R and F constant, one has 

q = exp( - Rt) . J: dt J: exp(Rt) dt . F + exp( - Rt) . (at + b). (10) 

This solution, however, remains purely formal, as long as the matrix exponentials must 
be written out as infinite series according to the definition (7). Therefore we look for a 
closed expression for (10). 

2. General solution in closed form 

The matrix exponential exp(Rt) is defined as an infinite power series in R. This will also 
be the form taken by the matrix factors exp( - Rt) and exp( -at). J b  d t  J b  exp(Qt) dt 
occurring in (10) and, more generally, by any matrix operator f(R) of exp(Rt), which in 
addition to products, also may contain time derivations and time integrations. Since R 
satisfies its minimal polynomial, which we suppose to be of degree n (n < N ) ,  it is possible 
to express the powers of R, starting from the nth power, as a linear combination of 
smaller powers of Q. This leads us to write 

(11) 

As it is always possible to diagonalize R, use can be made of the LagrangeSylvester 

f(R) = n,l+A,n+ * * .  +L,-,R"-l, 

where the n coefficients A,, A I , .  . . , A,,- I must be determined as functions of time. 

interpolation formula (Gantmacher 1959) 

where tl, are the n different eigenvalues of R. Now, since Q is a skew-symmetric matrix, 
its eigenvalues are purely imaginary and complex conjugate in pairs or zero; if n is odd, 
at least one eigenvalue is zero. Putting m = i n  if n is even, and m = gn - 1) if n is odd, the 
different eigenvalues of R will be denoted by io , ,  . . . , iom, - io , ,  . . . , - iom, 0, writing 
the zero only if n is odd. 
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The coefficients A j  must be determined by identification of (11) and (12). For a simple 
calculation from the minimal polynomial, we replace in (11) and (12) R by a variable z 
(and I by l), and write 

f(z) = A O + A 1 Z +  . . . + A , - l Z n - '  

f ( iwj)+(-l)"+'f(-iwj) 

j =  1 

k(z) is nothing else but the minimal polynomial of R :  
m n (z2+wf) for n even 

z n ( Z 2 + W f )  for n odd, 

j =  1 

m 

j =  1 

k(z)  z"-S1z"-l+ . . .  +(-1)"S, = 

where S ,  are elementary symmetrical functions of the oj. If all the eigenvalues of R are 
distinct, the minimal polynomial equals the characteristic polynomial and then S ,  is the 
sum of the principal minors of order p of the determinant of R. Obviously S ,  = 0 if 
p is odd. Noting that 

the coefficients Aq can be found by straightforward calculation from (13), and substitution 
in (11) leads to the desired finite power series. If f(R) is supposed to be a real operator, 
the result is 

for n = 2m: 

m 

f(R) = 1 A j .  
j = 1  

for n = 2 m +  1 :  

(16b) 
R m 

f(S2) = f(O) l+ 1 A j .  , 
j =  1 

where in both expressions 

By k2,(z) is denoted the polynomial obtained by omitting all the terms containing z 
raised to a power greater than 21 in k(z)  (n even) or k(z)/z (n odd), and k21(iwj) in (17) is 
equal to E:=, ( -  1)IS2(,,,-,pfr. 
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In particular the closed form of the matrix exponential is found to be 

for n = 2m: 

sin o .t m 

cos ojtl +----J-R 

forn = 2 m + l :  

m 

exp(Rt) = I+ 1 A j .  
j =  1 Of 

This last equation is a generalization of a formula deduced by Chang and Audeh (1970) 
in the case of three dimensions, using direct recursion relations for R. 

After substitution of t  by - t  in (18) we get the inverse matrices 

for n = 2m:  

forn = 2 m + l :  

sin ojt 1 -cos o m 

exp(-fi t)= I+  1 Aj .  -- 
j =  1 ( oj a+ oj’ 

In the same way the matrix P = exp( - f i t ) .  J b  dtJb exp(Rt) dt occurring in ( IO)  can be 
written as a finite power series in R. Putting in (16) 

1 -exp( - iojt) - iojt  exp( - iojt) 
f(ioj) = exp( - wjt)  (20a) (iwj)2 

f(0) = +t2,  

there results 

for n = 2 m :  

[ojt sin ojt - (1 -cos wjt)]I + (ojt cos ujt - sin 

for n = 2 m + l  

R 

(21b) 
with Aj given again by (17). 
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Substitution of(19) and ( 2 1 )  into (10) yields the general solution for q in a closed form. 
Leaving the initial conditions very general : when t = 0 : q(0) = qo and qo = u o ,  we find 

for n = 2 m :  

+ f A ~ .  ((wit sin Ojt + cos wjt)qo + (wjt cos wit - sin wjt)- 
j =  1 

m 

t cos ojtu, - t  sin Ojt- 
j =  1 

for n = 2 m + l :  

tZ tZ R 2 . F  
q = - F +  C -Ai.--- + 40  + tu0 

2 j = 1  2 Of 

S 2 . F  

w j  

(ojt cos wjt -sin wjt)-+ ( I  -cos ojt - mjt sin 

+ f Ai. ( (wjt cos ojt-sin ajt)- * 40  

j =  1 * j  

+(1 -cos wj t -w j t  sin mjt)- 

n. U0 nz. U0 + f Aj. ( -tsincojt- + t( 1 - COS wjt)--i- 
j =  1 Oj W j  

3. Application to particle motion in a rotating frame 

The equation of motion describing particle motion in a three-dimensional space with 
respect to a rotating coordinate system having the same origin as the fixed frame, is 
known to be (Goldstein 1950) 

mi: = F,+F,+F, ,  (23) 
with Fa : the absolute force; F, = - m [ b  x r +o x (o x r)]  : the force of transport 
F, = - 2 m ( o x i . ) :  the Coriolis force. To expose the announced connection with (4), 
equation (23 )  is written as 

F a  P + 2 o x i . + b x r + o x ( o x r )  = -. 
m 

If a skew-symmetric matrix R is associated with o(oX, a,,, o,) according to 

0 -0, wy 

each cross product o x x can be replaced by an inner product a .  x. In this way (24) is 
reduced to (4). 
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The equation is of particular interest for describing the motion of a heavy particle 
near the surface of the earth ; then S'2 and F,/m = g may be treated as constant and (24) 
becomes : 

(25) 

The exact solution of this equation has been obtained by von Eberhard (1930) and Leroy 
(1971) after projection on the axes of a well chosen coordinate system. A frame-inde- 
pendent vector solution has been obtained by Verheest and Leroy (1973) using a repre- 
sentation in circularly polarized coordinates. 

The method of the matrix exponential, discussed in this paper, enables us to write 
down this solution immediately. The eigenvalues of R are 0 and f i o ,  with 
o2 = +CO: + 05 ; as A = I for N = n = 3, we find for the matrix exponential from 
(1 8b) 

P + ~ R .  r + Q 2 .  r = g. 

sin ut 1 -cos ot 
0 o2 exp(Qt) = I +---Cl+ R2, 

and for the general solution from (22b) 

Y = -g+- + Y O  +tu() 
t 2  t w .  g 
2 2w2 

0 . g  R2. g 
w 3  o4 

+ (ut cos ot - sin or)- + (1 -cos wt - wt sin or)- 

n. Yo R 2 .  Yo 
+(wtcoswt-sinw~)-+(1-coswt-ot sincot)- 

w CO2 

a .  U0 R 2 .  U0 
- t sin wt- + t( 1 -cos ut)- 

0 o2 ' 

which after we return to a notation with cross products and choose the initial condition 
yo = 0, leads us to the solution found by Verheest and Leroy (1973). 
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